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Motivation

n Existing models primarily focus on performance
n Number crunching was the bottleneck until 

the mid-2000’s 
n Current hardware bottlenecks include

n Memory bandwidth
n Power usage

n There is a need for a new model which includes 
both power and performance
n High-level abstraction of hardware and application
n Focus on power and energy consumption
n
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Ellsworth et. al., 2016

Typical cluster power 
draw when fully occupied
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Modeling Multi-Core Energy

n Roofline
n Operational intensity
n Support for power and energy

– Vuduc et al., 2014

n Device Specific
n Advanced knowledge of the architecture
n Instruction-level modeling

– Shao and Brooks, 2009
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n McPAT
n Expert knowledge of the architecture
n State-of-the-art modeling framework

– Li et al., 2009

Not easily extendable to real-world applications



Empirical Mode Decomposition  (EMD)

Decompose a non-parametric non-stationary time-
series into intrinsic mode functions and the residual 
trend

 

n Used in many scientific fields:
n Medicine, Finance, Geosciences

n Used to uncover correlations in physical phenomena

6

TAPEMS’17

[ N. Huang, et al. The empirical mode
decomposition and the Hilbert spectrum 
for nonlinear and non-stationary time 
series analysis, 1998.]



Empirical Mode Decomposition (cont’d)

n Power draw is a complex physical 
response to the workload of a given 
application on the hardware 

n Final result of EMD is the residual trend
n For power draw, this trend shows power 

consumption over time when high-
frequency interactions have been 
removed

n Can be modeled using quadratic equation
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Ensemble Empirical Mode Decomposition 
(EEMD)
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n EMD strongly depends on variations in 
frequency and amplitude of the time-series 
to decompose all IMFs
n EEMD alleviates this dependency

n EEMD [Wu & Huang, 2009] 
n Uniform white noise is added to the source signal 

before IMFs are decomposed
n EMD is performed on this new signal many times
n The resulting IMFs are the mean of all the IMFs



Model Construction

1. Choose an execution configuration
n E.g., Number of cores, power limit

2. Run a few times (n)
1. Obtain Power Trace using Measurement 

Procedure

2. Apply EEMD
n 5 W @ N = 50

3. Collect Residual Trend

3. Fit quadratic model to the n residuals
n Including idle power measurements in the power 

trace enables a quadratic fit

1.
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Model Construction (cont’d) 10
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Suppose no idle power measurements

Same Configuration Varying # Cores



Measurement Procedure

1. Begin power sampling
n Sandia Power API

n RAPL via Linux Power Capping 
Framework

n 5ms sampling rate
n Power = DRAM + Core

2. Wait 5 seconds
n Capture idle power

3. Begin application
Wait for end 

4. Wait 5 seconds
n Capture idle power

5. End power sampling
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Experiment Specifications 12

Computing Platform

n Rulfo single-node system at 
Old Dominion University

n Xeon Phi Processor 7210 
n 64 cores @ 1.3 GHz 

per core: 
n 4 HW threads 
n 2 512-bit VPU

n 32 MB L2 cache
n 16 GB MCDRAM
n 215 Watt TDP

n Application configurations
n CoMD

n Force Kernel: LJ, EAM
n Problem Sizes: 60, 80, 100

n GAMESS
n Problems:                                       

1L2Y, 20w, S265, S301

n Hardware configuraions
n Number of Cores: 32, 48, 63 

n 1 core dedicated to power measurements
n DRAM Memory: DDR, MCDRAM (flat)
n Power Limiting: 140, 130, 120, 110, 100, 90
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Modeled vs. Measured Results (CoMD) 13
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Modeled vs. Measured Results (GAMESS) 14
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Measured Results (MCDRAM) 15
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MCDRAM (flat-mode) 
provides best performance 
vs. DDR

n 1-2% energy savings
n 1-3W power reduction
n 1-2% time reduction



Measured Results (CoMD & GAMESS)

CoMD
n Max cores (63)

n To max performance
n 120W power limit
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GAMESS
n Min cores (32)

n To max memory bandwidth
n Default power  (215W)



Modeled Results 17
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Quadratic Model 

n Time
n Coefficient a < 0
n Direct relationship to |a|

n Power
n Coefficient b > 0 (max power)
n Coefficient c > 0 (min power)
n Direct relationship with |b| & |c|



Model Error 18
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Power 
n No more than 10% error
n Is under-estimated

n Residual does not go up to 
max power draw

Time
n No more than 15% error
n Is over-estimated

n Model time assumes power 
draw at the start and end of 
the trace is equal

CoMD



Model Error (cont’d) 19
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Energy
n 5% – 30% error
n Shorter traces incur higher error than 

longer traces
n Short trace < 100 seconds
n Long trace  > 100 seconds

GAMESS



Advantages of Modeling Energy with EMD

Generality
n Applies to any hardware architecture

n Multi-core CPU, Accelerator, or Hybrid
n Single-node, Multi-node

n Applies to any software application
n Benchmark
n Kernel
n Mini-App
n Real-World
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Lawson, Sundriyal, MS, and Shen. 2015. 
Modeling performance and energy for applications offloaded to Intel Xeon Phi. 

Phase Model



Advantages of Modeling Energy with EMD (cont’d) 21

TAPEMS’17

Rigorous
n Guided specific measurement 

procedure
n EMD residual fits to quadratic 

function

Ease-of-Use
n Only requires a power trace to 

produce a model
n No advanced knowledge of 

application or hardware 
required

Performance
n Manageable overhead

n Known to increase with trace size
n Alleviated by running EMD on 

segments



Future Directions

nRefine model construction and definition

n Investigate applicability of IMF modes

n Enhance the model with predictive capabilities
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Questions?
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MCDRAM 25
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n Flat-Mode   (this work) 
n Use MCDRAM over traditional DDR
n numactl –membind 1 

./<application command>

n Cache-Mode
n L3 Cache Level
n Specific variables (in code) 

assigned to MCDRAM
n Requires explicit code changes

n Hybrid-Mode
n Split MCDRAM 25/75 or 50/50 

between Flat and Cache modes

Multi-Channel DRAM     
n Stackable Memory
n 16 GB
n 3 Modes of Operation

n Flat
n Cache
n Hybrid



EMD / HHT Analysis 26
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CoMD on Ivy-Bridge (max cores) GAMESS on KNL (max cores)


