

Analyzing the Parallel I/O Severity of MPI Applications

Authors: Sandra Mendez, Dolores Rexachs, Emilio Luque

Speaker: Sandra Mendez, PhD.

Research Associate, HPC Group, LRZ. External Researcher, HPC4EAS Research Group, UAB.

Outline

1 Introduction

2 Defining I/O Severity

- Characteristics
- Requirements
- Severity degrees
- Proposed Methodology

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

4 Experiments

5 Conclusions

Introduction ●0	Defining I/O Severity 0000000	Proposed Methodology	Experiments 000	Conclusions

The I/O System

A D N A B N A B N A B N

- Parallel I/O performance evaluation is a non-trivial task. It depends on the I/O pattern of application, the I/O software stack and the I/O system infrastructure.
- \bullet Depending on the I/O patterns and utilized resources, the parallel application I/O performance can vary considerably.
- How we know if the data transfer rate is appropriate for a parallel application?

Sandra Mendez (LRZ and HPC4EAS) Parallel I/O Severity of MPI Applications

Defining I/O Severity	Proposed Methodology	Conclusions
0000000		

Severity

The impact degree on I/O performance based on application I/O requirements (features) and system configuration.

- \bullet Represent a parallel application through its key I/O characteristics.
- Define the I/O requirements based on the characteristics and parameters of the HPC system.
- Define degrees of severity by using the I/O requirements.

Defining I/O Severity	Proposed Methodology	Conclusions
000000		

Characteristics

Parallel application:

- NP the number of MPI processes of the application
- $FI = \{F_1, F_2, ..., F_n\}$ a set of files of the application
- *ST_{app}* the storage capacity required by the application
- DT_{app} data transferred to file system by the application

$$FI = F1; NP = 1024$$
$$ST_{app} = 2 TiB$$
$$DT_{app} = 4 TiB$$

File Characteristics

The metadata information of each F_i comprises:

- NP_{io} the maximum number of I/O processes
- Fisize the file size
- AM the access mode (strided or sequential)
- AT the access type, which can be Unique or Shared
- the access data type that can be write-only, read-only or read-write.
- Fi_{data} the amount of data to be transferred of the file F_i .
- $\#PhIO_{F_i}$ the count of I/O phases of the file F_i

 NP_{io} =1024; Fi_{size} =2TiB; Strided AM; Shared AT; Write/Read; $PhIO_{F_i}$ = (ph1, ..., ph51)and $\#PhIO_{F_i}$ = 51

<日

<</p>

Characteristics - Phases

ph1 to ph50: 1 MPI_File_write_at_all per MPI process. $P_{iop} = 1$, rs(MiB)=40.96, P_{data} =40.96MiB ph51: 50 MPI_File_read_at_all operations. $P_{iop} = 50$, rs(MiB)=40.96, $P_{data} = 40.96MiB * P_{iop}$

Defining I/O Severity ○○○○○●○○	Proposed Methodology	Experiments 000	Conclusions 00

Requirements

• Percentage of data required by I/O phases per compute node

 $Data_{CN} = rac{(np_{CN} imes P_{-}data) imes 100}{RAM_{CN}}$

 \bullet Parallel I/O in a compute node

$$PIO_{CN} = rac{rs imes np_{CN}}{BW_{CN}}$$

Defining I/O Severity ○○○○○●○	Proposed Methodology	Experiments 000	Conclusions 00

Requirements

 Percentage of the storage capacity required the application

$$\% ST_{Req} = \frac{ST_{app}}{FS_{size} - FS_{used}} \times 100$$

 $\bullet\,$ Weight of the I/O operations

$$\mathit{Ideal}_{\mathit{IOP}} = \frac{\mathit{Fi}_{\mathit{data}}}{\mathit{Stripe}_{\mathit{size}}}$$

 $WIOP_{Fi} = rac{\sum_{ph=1}^{\#PhIO_{Fi}} np_{io}(ph) imes P_{-} \#iop(ph)}{Ideal_{IOP}}$

Five Severity Degrees:

- No Severe (NS)
- Low (Lo)
- Medium (M)
- High (H)
- Very High (VH)

Severity	Requirement Evaluation								
	%Data _{CN} %ST _{Rea}				WIOP		%PIO _{CN}		
NS	(< 10)	and	(< 20)	and	(≤ 1)	and	$(65 < and \le 100)$		
Lo	$(10 \le and < 20)$	and	$(20 \le and < 30)$	and	(1 < and < 2)	and	$(50 < and \leq 65)$		
M	$(20 \le and < 30)$	or	$(30 \le and < 40)$	or	$(2 \le and < 3)$	or	$(35 < and \leq 50)$		
Н	$(30 \le and < 70)$	or	$(40 \le and < 80)$	or	$(3 \leq and \leq 4)$	or	$(15 < and \leq 35)$		
VH	(≥ 70)	or	(≥ 80)	or	(≥ 5)	or	$(\leq$ 15 or $>$ 100)		

э

< 回 > < 三 > < 三 >

Defining I/O Severity	Proposed Methodology	Conclusions
	0000	

Methodology for the I/O performance evaluation (1)

H 5

Methodology for the I/O performance evaluation (2)

 $CIO_{ph_i} = (rs \times np_{CN} \times CN)/sec$

-

<u>00 0000000 000 000 000 000</u>		Defining I/O Severity	Proposed Methodology		Conclusions
	00	0000000	0000	000	00

Analyzing the $\ensuremath{\mathsf{I}}\xspace/\mathsf{O}$ requirements, severity and application characteristics

Sandra Mendez (LRZ and HPC4EAS) Parallel I/O Severity of MPI Applications

May 14, 2017 16 / 21

Experimental Environment

Compute System Description Number of nodes 9216 Sockets per Node 2 16 Cores per Node Memory per node (GByte) 32 I/O System FS1 FS2 MPI library IBM MPI IBM MPI Communication Network FDR10 IB FDR14 IB Storage Network FDR10 IB FDR14 IB Servers-Devices Connection FDR10 IB 12Gbps SAS Parallel Filesystem GPFS GPFS Data Server 80 NSD 16 NSD Metadata Server Stripe/Block Size 8MiB 8MiB RAID 6 GPES Native Raid Level of Redundancy Number of I/O Devices $10 \times 564 \text{ HDDs}$ $8 \times 348 \text{ HDDs}$ Device Capacity 3TiB 4TiB Filesystem Capacity 12 PiB 5.2 PiB Max. I/O Performance Write $\approx 180 \text{ GiB/sec}$ $\approx 130 \text{ GiB/sec}$ Read $\approx 200 \text{ GiB/sec}$ $\approx 150 \text{ GiB/sec}$ \approx 4.5 GiB/sec Compute Node

Table: SuperMUC supercomputer

Sandra Mendez (LRZ and HPC4EAS) Parallel I/O Severity of MPI Applications May 14, 2017 17 / 21

(4 何) ト 4 日 ト 4 日 ト

S3D-IO: Workload 1200x1200x1200 - 16 MPI proc. per CN

- NP = {256, 512, 1024, 2048, 4096, 10240, 25600}
- FI = {F1, F2, F3, F4, F5} ∀ np ∈ *NP*, where the number assigned to the files indicates the order in which these are written.
- *ST*_{app} = 1030 GiB; *Data*_{app} = 1030 GiB

FI is described as:

- $NP_{io} = \{256, 512, 1024, 2048, 4096, 10240, 25600\}$
- Fi_{size} (GiB) = {206, 206, 206, 206, 206}
- Fi_{data} (GiB) = {206, 206, 206, 206, 206}
- For F1 to F5: Strided AM; Shared AT; the access data type is write-only.
- \forall $Fi_i \in FI$, $PhIO_{Fi_i} = (ph_1)$ and $\#PhIO_{Fi_i} = 1$

Runi	ng Parame	eters	APP (Character	ristics		Re	quirement	s		Severity
np	np _{CN}	CN	P_#iop	rs	P_data	PIO _{CN}	%PIO _{CN}	Data _{CN}	WIOP	ST _{Rea}	Degree
				(MiB)	(MiB)	(GiB)					
256	16	16	1	824	824	12.87	286%	40.23%	0.01	0.02%	Н
512	16	32	1	412	412	6.44	143%	20.12%	0.02	0.02%	М
1024	16	64	1	206	206	3.22	72%	10.06%	0.04	0.02%	Lo
2048	16	128	1	103	103	1.61	36%	5.03%	0.08	0.02%	М
4096	16	256	1	51	51	0.80	18%	2.51%	0.16	0.02%	Н
10240	16	640	1	21	21	0.32	7%	1.01%	0.39	0.02%	VH
25600	16	1600	1	8.2	8.2	0.13	3%	0.40%	0.97	0.02%	VH

Conclusions and Future Work

Conclusions

- Methodology for the I/O performance evaluation for parallel scientific applications based on the I/O characteristics of the application, requirements and severity degree
- Five severity degrees were defined considering the I/O requirement of parallel applications and parameters of the HPC system.
- $\bullet\,$ Severity and requirement provide useful information to reduce the complexity of the I/O performance evaluation.

Future Work

- Apply the methodology in other HPC systems and
- Evaluate the definition of a new requirement based on the meta-data operations.

(日)

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?