
Comparative Analysis of OpenACC Compilers

Daniel Barba, Arturo Gonzalez, Diego R. Llanos
Grupo Trasgo

Universidad de Valladolid

TAPEMS, ICA3PP2016
December 15th 2016, Granada, Spain

1 / 16
Comparative Analysis of OpenACC Compilers

N



Introduction

Objective
Presenting a study about the level of support of OpenACC in
available compilers, including maturity level and relative
performance of generated code.

2 / 16
Comparative Analysis of OpenACC Compilers

N



State of the Art

About OpenACC

I It is a new parallel programming model.

I It guides automatic parallelization of sequential code.

I It is based on the use of compiler directives or pragmas.

I It was designed for GPU and Xeon Phi accelerators.

3 / 16
Comparative Analysis of OpenACC Compilers

N



State of the Art

Levels of Parallelism in OpenACC

Tries to unify concepts for GPUs and Xeon Phi:

I Gangs: Coarse-grain level.

I Workers: Middle level.

I Vector Length: Fine-grain level. Designed for exploiting
vectorization capabilities of the Xeon Phi.

4 / 16
Comparative Analysis of OpenACC Compilers

N



State of the Art

Existing OpenACC Compilers

Commercial:

I PGI Compiler.

I CRAY Compiler.

I ENZO Compiler.

Free or Open Source:

I OpenUH: University of Houston, USA.

I accULL: Universidad de La Laguna, Spain.

I Omni: University of Tsukuba, Japan.

I OpenARC: Oak Ridge National Laboratory, USA.

I RoseACC: University of Delaware, USA.

I GCC.

5 / 16
Comparative Analysis of OpenACC Compilers

N



State of the Art
Available OpenACC Compilers
(when this stage of our work was done)

Commercial:

I PGI Compiler.

I CRAY Compiler.

I ENZO Compiler.

Free or Open Source:

I OpenUH: University of Houston, USA.

I accULL: Universidad de La Laguna, Spain.

I Omni: University of Tsukuba, Japan.

I OpenARC: Oak Ridge National Laboratory, USA.

I RoseACC: University of Delaware, USA.

I GCC.

6 / 16
Comparative Analysis of OpenACC Compilers

N



State of the Art

Benchmarking Tools

I OpenACC Validation Testsuite: Pragma, directive and clause
validation.

I EPCC OpenACC Benchmark Suite: Three benchmark levels:
microbenchmarks, synthetic applications and real applications.

I Rodinia for OpenACC: designed for accelerators. Explores a
wide range of problems.

7 / 16
Comparative Analysis of OpenACC Compilers

N



Evaluation

Experimental Setup

Host:

I Xeon E5-2690v3, 12 cores @1.9GHz.

I 64GB memory, 4 * 12GB modules.

I Nvidia GTX Titan Black GPU. 2880 cores @ 980Mhz, 15
SMs, 6GB memory.

Compilers:

I PGI Compiler bundled in Nvidia OpenACC Toolkit version
15.7-0.

I OpenUH: version 3.1.0.

I accULL: version 0.4alpha.

8 / 16
Comparative Analysis of OpenACC Compilers

N



Evaluation

A) Completeness of OpenACC Features Supported

From compiler’s documentation and our testing, we conclude that:

I The OpenACC standard is not fully implemented yet by any
compiler.

I PGI Compiler is the most complete implementation to date.

I There is work to be done, but compilers are reaching a
respectable maturity level.

9 / 16
Comparative Analysis of OpenACC Compilers

N



Evaluation
B) Robustness and Pragma Implementation
We use EPCC OpenACC Level 0 Benchmark Suite.

EPCC Level0 PGI openUH accULL
kernels if -37.50 Fail 4.54
parallel if -30.76 -0.48 1237.02

parallel private -21.94 Fail 51.09
parallel 1stpriv Fail Fail -213.83
kernels comb. -1.67 -108.43 -127.17
parallel comb. -0.05 -2.74 33.38

Update host 478.63 373.22 548.77
Kernels Invoc. Fail 12.76 2398.20
Parallel Invoc. 31.81 13.47 1377.88

Parallel reduct. -14.85 -164.41 -2168.12
Kernels reduct. -8.49 -172.31 -2009.11

10 / 16
Comparative Analysis of OpenACC Compilers

N



Evaluation

C) Relative Performance of Generated Code
Data Movement: We use data transfer benchmarks from EPCC
OpenACC Level 0 Benchmark Suite.

Using PGI compiler as reference and the geometric mean of ratios
to show the results.

Data Size PGI openUH accULL
1kB 1.0 18.93 19.58

1MB 1.0 4.14 4.24
10MB 1.0 2.64 2.72

1GB 1.0 8.75 6.76

11 / 16
Comparative Analysis of OpenACC Compilers

N



Evaluation

C) Relative Performance of Generated Code
Execution: We use EPCC OpenACC Benchmark Suite Level 1 and
Application Level.

Using PGI compiler as reference and the geometric mean of ratios
to show the results.

Data Size PGI openUH accULL
1kB 1.0 4.39 24.38

1MB 1.0 1.92 4.11
10MB 1.0 1.59 1.63

It was not possible to test bigger data sizes because the binaries
produced by some of the compilers could not handle them.

12 / 16
Comparative Analysis of OpenACC Compilers

N



Evaluation
C) Relative Performance of Generated Code
Execution: We try to use Rodinia for OpenACC.

I Many compilation issues with the selected compilers.
I The table shows execution times in milliseconds.
I Only benchmarks compiled with at least 2 compilers are

shown.

Exec. time
3 reps

PGI OpenUH accULL

gaussian 2440.206 52.491 15422.944
nw 2640.497 652.180 322.101
lud 3803.756 1723.576 Fail
cfd 2677.387 0.846 Fail

hotspot 2386.325 53.219 Fail
pathfinder 5137.865 34.738 Fail

srad2 2488.895 692.063 Fail

13 / 16
Comparative Analysis of OpenACC Compilers

N



Conclusions

I We have developed a benchmarking tool called TORMENT
(to be presented in PDP 2017 in March).

I OpenACC standard and its compiler implementations are on
their way to a reasonable maturity level.

I Many details are still not completely developed, but the efforts
are promising.

I No compiler fully supports the standard.

I In terms of robustness and pragma implementation, the PGI
Compiler show the best behaviour, with a smaller overhead
and several optimizations.

I Regarding performance, the PGI Compiler gets the best
results, but both OpenUH and accULL show promising
numbers.

14 / 16
Comparative Analysis of OpenACC Compilers

N



Future Work

I We are working on our benchmark tool, TORMENT. Working
on adding support for more compilers.

I We are also working with relative performance comparison of
OpenACC and CUDA code.

I We are studying the impact of specific block geometries in the
behaviour of OpenACC kernels.

15 / 16
Comparative Analysis of OpenACC Compilers

N



Comparative Analysis of OpenACC Compilers

Daniel Barba, Arturo Gonzalez, Diego R. Llanos
Grupo Trasgo

Universidad de Valladolid

TAPEMS, ICA3PP2016
December 15th 2016, Granada, Spain

16 / 16
Comparative Analysis of OpenACC Compilers

N


