BSC

Barcelona Supercomputing Center Centro Nacional de Supercomputación

OTFX An In-memory Event Tracing Extension to the Open Trace Format 2

Michael Wagner^{1,2}, Andreas Knüpfer², Wolfgang E. Nagel²

michael.wagner@bsc.es

Barcelona Supercomputing Center (BSC), Barcelona, Spain
Center for Information Services and High Performance Computing (ZIH), Dresden, Germany

Outline

(Introduction

- (Concepts for In-memory Event Tracing
- (Hierarchical Memory Buffer
- (Evaluation
- (Conclusion

Parallization – Ideal vs. Reality

Michael Wagner, TAPEMS 2016

4

Tool Workflow: Score-P, OTF2 and Analyzers

Performance Analysis Workflow

Concepts for In-memory Event Tracing

(Requirements

- Reduce number of stored events when memory buffer is exhausted
- Introduce minimal overhead
- Depend only on information extractable directly from events

(Comparison criteria

- Quality of remaining information
 - Is it still possible to understand the application behavior?
 - Is it still possible to identify performance issues?
- Size of single reduction steps

Event Reduction

(1) Reduction by Order of Occurrence

- Define time interval [t1,t2] with either t1 or t2 fixed
- Time interval contains complete information; none outside
- Small reduction steps (events)

(2) Reduction by Event Class

- Sort events by class (functions, parallel library, performance metrics)
- Complete information for remaining event classes; none for others
- Large reductions steps (complete event classes)

(3) Reduction by Calling Depth

- Sort events by calling depth
- Overall information detail is reduced
- Depends on call stack distribution of events

(4) Reduction by Function Duration

- Sort functions (enter/leave) by duration
- Overall information detail is reduced
- Depends on distribution of events with regard to function duration

Event Reduction: Flat Continuous Event Representation

The Hierarchical Memory Buffer

The Hierarchical Memory Buffer

13

Prototype Workflow with OTFX

Michael Wagner, TAPEMS 2016

14

Evaluation: Runtime Overhead

- (Trace replay to ensure equal input data for both libraries
- (In average 5.1% faster than OTF2
- (Library time of OTFX accounts for 7.8% of overall runtime

Application	Trace size (per process)			
	OTF2	OTFX	+Filter	MPI-only
gromacs	1.7 GB	603 MB	127 MB	9.8 MB
cosmo-specs+fd4	1.5 GB	514 MB	21 MB	80 KB
3dbox	919 MB	297 MB	116 MB	8.8 MB
pipe	817 MB	267 MB	88 MB	8.5 MB
colloid	900 MB	266 MB	40 MB	12 MB
lennard-jones	1.8 GB	546 MB	4.1 MB	690 kB
rigid	709 MB	203 MB	23 MB	680 kB

- (OTFX compression results in 2.8x 3.5x smaller traces
- (Duration filter reduces trace to 0.2% 12.6% of original size
- (For gromacs and nek5000 (3dbox, pipe) event reduction is triggered

Evaluation: Analysis

Conclusion

- (Tracing long-running applications encounters three critical challenges
 - Data volumes
 - Application slow down
 - Measurement bias
- (In-memory event tracing workflow with OTFX
- (Hierarchical memory buffer
- (In-memory event tracing remarkably reduces trace size, application slow down and measurement bias

