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Parallization – Ideal vs. Reality 

Performance Analysis Tools 
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Tool Workflow: Score-P, OTF2 and Analyzers 
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Performance Analysis Workflow 

Application 

Measurement Tool Analysis Tool 

Analysis 

File System 

Three Key Challenges 
(1) Number of trace files 

limits scalability 
(2) Huge amounts of trace 

data overwhelm file 
systems and analyzers 

(3) Measurement bias due 
to intermediate memory 
buffer flushes 

Solution 
In-memory Event Tracing 
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Concepts for In-memory Event Tracing 

  Memory Buffer 
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Event Reduction 

 
  Requirements  

§  Reduce number of stored events when memory buffer is exhausted 
§  Introduce minimal overhead 
§  Depend only on information extractable directly from events 

  Comparison criteria 
§  Quality of remaining information 

•  Is it still possible to understand the application behavior? 
•  Is it still possible to identify performance issues? 

§  Size of single reduction steps 
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Event Reduction 
(1)  Reduction by Order of Occurrence 

§  Define time interval [t1,t2] with either t1 or t2 fixed 
§  Time interval contains complete information; none outside 
§  Small reduction steps (events) 

(2) Reduction by Event Class 
§  Sort events by class (functions, parallel library, performance metrics) 
§  Complete information for remaining event classes; none for others 
§  Large reductions steps (complete event classes) 

(3) Reduction by Calling Depth 
§  Sort events by calling depth 
§  Overall information detail is reduced  
§  Depends on call stack distribution of events 

(4) Reduction by Function Duration  
§  Sort functions (enter/leave) by duration 
§  Overall information detail is reduced  
§  Depends on distribution of events with regard to function duration 
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Event Reduction: Flat Continuous Event Representation 

  Memory Buffer 

Event Reduction 
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Hierarchical Event Representation 
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The Hierarchical Memory Buffer 
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The Hierarchical Memory Buffer 
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Prototype Workflow with OTFX 
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Evaluation: Runtime Overhead 

  Trace replay to ensure equal input data for both libraries 
  In average 5.1% faster than OTF2 
  Library time of OTFX accounts for 7.8% of overall runtime 
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Evaluation: Trace Sizes 

 

 
  OTFX compression results in 2.8x - 3.5x smaller traces 
  Duration filter reduces trace to 0.2% - 12.6% of original size 
  For gromacs and nek5000 (3dbox, pipe) event reduction is triggered 

Application 
Trace size (per process) 

OTF2 MPI-only 

gromacs 1.7 GB 9.8 MB 
cosmo-specs 1.5 GB 80 KB 
3dbox 919 MB 8.8 MB 
pipe 817 MB 8.5 MB 
colloid 900 MB 12 MB 
lennard-jones 1.8 GB 690 kB 
rigid 709 MB 680 kB 

Application 
Trace size (per process) 

OTF2 OTFX +Filter MPI-only 

gromacs 1.7 GB 603 MB 127 MB 9.8 MB 
cosmo-specs+fd4 1.5 GB 514 MB 21 MB 80 KB 
3dbox 919 MB 297 MB 116 MB 8.8 MB 
pipe 817 MB 267 MB 88 MB 8.5 MB 
colloid 900 MB 266 MB 40 MB 12 MB 
lennard-jones 1.8 GB 546 MB 4.1 MB 690 kB 
rigid 709 MB 203 MB 23 MB 680 kB 
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Evaluation: Analysis 
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Conclusion 
  Tracing long-running applications encounters three critical challenges 

§  Data volumes 
§  Application slow down 
§  Measurement bias 

  In-memory event tracing workflow with OTFX 
  Hierarchical memory buffer 
  In-memory event tracing remarkably reduces trace size, application slow 

down and measurement bias 
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