
Michael Wagner1,2, Andreas Knüpfer2, Wolfgang E. Nagel2

michael.wagner@bsc.es

1) Barcelona Supercomputing Center (BSC), Barcelona, Spain
2) Center for Information Services and High Performance Computing (ZIH), Dresden, Germany

OTFX
An In-memory Event Tracing Extension

to the Open Trace Format 2

2

Outline

  Introduction
  Concepts for In-memory Event Tracing
  Hierarchical Memory Buffer
  Evaluation
  Conclusion

Michael Wagner | TAPEMS 2016

Michael Wagner, TAPEMS 2016 3

High Performance Computing

2021

1000+ PFLOP

100M+ PE

2016

93 PFLOP

10,649,600 PE

2011

10.5 PFLOP

705,024 PE

2006

0.28 PFLOP

131,072 PE

BlueGene/L Sunway TaihuLight K Computer

???

Michael Wagner, TAPEMS 2016 4

Parallization – Ideal vs. Reality

Performance Analysis Tools

Number of Cores

S
pe

ed
 U

p

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

Michael Wagner, TAPEMS 2016 5

Tool Workflow: Score-P, OTF2 and Analyzers

Instrumentation Wrapper

Vampir
Scout Cube ParaProf PerfExplorer

Periscope

Event Traces (OTF2) Call-path Profiles (CUBE4, TAU) Online Interface

Process-level

Parallelism

(MPI, SHMEM)

Thread-level

Parallelism

(OpenMP, Pthreads)

Accelerator-based

Parallelism

(CUDA, OpenCL)

Source Code

Instrumentation

User

Instrumentation

Scalasca TAU

Score-P Measurement Infrastructure

Michael Wagner, TAPEMS 2016 6

Performance Analysis Workflow

Application

Measurement Tool Analysis Tool

Analysis

File System

Three Key Challenges
(1) Number of trace files

limits scalability
(2) Huge amounts of trace

data overwhelm file
systems and analyzers

(3) Measurement bias due
to intermediate memory
buffer flushes

Solution
In-memory Event Tracing

Michael Wagner, TAPEMS 2016 7

Concepts for In-memory Event Tracing

 Memory Buffer

Complete Trace Data

Compact Trace Data

Filtered Trace Data

Highly Efficient Encoding

 Dynamic Function Filtering

Event Reduction

Reduced Trace Data

Reduce memory allocation

Filter highly frequent function calls

Gradually reduce stored events

Michael Wagner, TAPEMS 2016 8

Event Reduction

  Requirements

§  Reduce number of stored events when memory buffer is exhausted
§  Introduce minimal overhead
§  Depend only on information extractable directly from events

  Comparison criteria
§  Quality of remaining information

•  Is it still possible to understand the application behavior?
•  Is it still possible to identify performance issues?

§  Size of single reduction steps

Michael Wagner, TAPEMS 2016 9

Event Reduction
(1)  Reduction by Order of Occurrence

§  Define time interval [t1,t2] with either t1 or t2 fixed
§  Time interval contains complete information; none outside
§  Small reduction steps (events)

(2) Reduction by Event Class
§  Sort events by class (functions, parallel library, performance metrics)
§  Complete information for remaining event classes; none for others
§  Large reductions steps (complete event classes)

(3) Reduction by Calling Depth
§  Sort events by calling depth
§  Overall information detail is reduced
§  Depends on call stack distribution of events

(4) Reduction by Function Duration
§  Sort functions (enter/leave) by duration
§  Overall information detail is reduced
§  Depends on distribution of events with regard to function duration

Michael Wagner, TAPEMS 2016 10

Event Reduction: Flat Continuous Event Representation

 Memory Buffer

Event Reduction

Find memory of
removed events

Clear memory
segments

Move memory
segments

Memory buffer
is exhausted

Trace Data

O(m) O(m) O(n)

Reduction: O(n)

Michael Wagner, TAPEMS 2016 11

Hierarchical Event Representation

 Hierarchical Event Representation

Event class

C
al

lin
g

de
pt

h

...

...

Enter

Enter

Enter

Leave

Leave

Leave

MPI

MPI MPI

Enter Leave

Metric

Metric

Metric Metric

Michael Wagner, TAPEMS 2016 12

The Hierarchical Memory Buffer

Level Dimension 2

Level

Dimension 1

Bin

Bin

Bin

Bin Bin

Level Dimension 2

Level Dimension 2

Level Dimension 2

13

The Hierarchical Memory Buffer

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

Bin

Bin

Bin

Bin

Bin

Bin Bin

Bin

1 2 3 ...

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

Bin

Bin

Bin

Bin

Bin

Bin Bin

Bin

1 2 3 ...

X

X

XCall Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics
Bin

Bin

Bin

Bin Bin

Bin

1 2 3 ...

X

X

XCall Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics
Bin

Bin

Bin

Bin Bin

Bin

1 2 3 ...

Bin

Event Reduction

Find memory of
removed events

Revoke according
memory bins

Distribute
memory bin

Memory buffer
is exhausted

Reduction: O(b)

O(b) O(1) O(1)

Michael Wagner, TAPEMS 2016 14

Prototype Workflow with OTFX

Sc
or

e-
P

OTF2 event
representation

OTF2 trace file

Source code

Instrumented code

Event recording

OTFX event
representation

Michael Wagner, TAPEMS 2016 15

Evaluation: Runtime Overhead

  Trace replay to ensure equal input data for both libraries
  In average 5.1% faster than OTF2
  Library time of OTFX accounts for 7.8% of overall runtime

0s

2s

4s

6s

8s

10s

gromacs

cosmo-specs

3dbox
pipe

colloid
lennard-jones

rigid

Li
br

ar
y

tim
e

OTF2
OTFX

Michael Wagner, TAPEMS 2016 16

Evaluation: Trace Sizes

  OTFX compression results in 2.8x - 3.5x smaller traces
  Duration filter reduces trace to 0.2% - 12.6% of original size
  For gromacs and nek5000 (3dbox, pipe) event reduction is triggered

Application
Trace size (per process)

OTF2 MPI-only

gromacs 1.7 GB 9.8 MB
cosmo-specs 1.5 GB 80 KB
3dbox 919 MB 8.8 MB
pipe 817 MB 8.5 MB
colloid 900 MB 12 MB
lennard-jones 1.8 GB 690 kB
rigid 709 MB 680 kB

Application
Trace size (per process)

OTF2 OTFX +Filter MPI-only

gromacs 1.7 GB 603 MB 127 MB 9.8 MB
cosmo-specs+fd4 1.5 GB 514 MB 21 MB 80 KB
3dbox 919 MB 297 MB 116 MB 8.8 MB
pipe 817 MB 267 MB 88 MB 8.5 MB
colloid 900 MB 266 MB 40 MB 12 MB
lennard-jones 1.8 GB 546 MB 4.1 MB 690 kB
rigid 709 MB 203 MB 23 MB 680 kB

Michael Wagner, TAPEMS 2016 17

Evaluation: Analysis

Michael Wagner, TAPEMS 2016 18

Conclusion
  Tracing long-running applications encounters three critical challenges

§  Data volumes
§  Application slow down
§  Measurement bias

  In-memory event tracing workflow with OTFX
  Hierarchical memory buffer
  In-memory event tracing remarkably reduces trace size, application slow

down and measurement bias

Level Dimension 2

Level

Dimension 1

Bin

Bin

Bin

Bin Bin

Level Dimension 2

Level Dimension 2

Level Dimension 2

