

Improving the Energy Efficiency of Evolutionary Multi-Objective Algorithms

<u>J.J. Moreno¹</u>, G. Ortega¹, E. Filatovas², J.A. Martínez¹ and E.M. Garzón¹ December 15, 2016

¹ Informatics Department, University of Almería, Almería, Spain

² Institute of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania

- 1. NSGA-II: Non-Dominated Sorting Genetic Algorithm II.
- 2. GPU implementation of the NDS procedure of NSGA-II.
- 3. Evaluation tools and methods.
- 4. Results, conclusions and future work.

NSGA-II

Pt+1 = Non-dominated sorting + crowding distance sorting

Non-dominated sorting

- An individual is nondominated when there is no other individual better than it for all objective functions.
- The set of non-dominated individuals is called a front.

Crowding distance sorting

- Used to ensure diversity in the population.
- Measures how close each individual is to its front neighbors.

Selection of the best individuals

We return the best N individuals from a population of size 2N

NSGA-II runtime analysis

Efficient NDS on GPU

Outline

CuDominance kernel

Objectives vectors of individuals

D = Dominance Matrix (output)

 D_{ij} = 1 \rightarrow P_{j} dominates P_{i}

CuFronts kernel

Warp Shuffle instructions

- Introduced in the Kepler microarchitecture.
- Enables a thread to directly read a register from another thread in the same warp.
- Four intrinsics: __shfl(), __shfl_down(), shfl up(), __shfl_xor().

Evaluation methods and tools

- CPU: 2 x Intel Xeon CPU E5-2620 v3 @ 2.40 GHz.
- GPU: 2 x NVIDIA Tesla K80.
- RAM: 64 GiB DDR3 @ 2133 MHz.
- OS: Ubuntu GNU/Linux 16.04.1 LTS.
- SDK: CUDA 8.0.

Energy measurement on Intel processors

- Using the Intel Running Average Power Limit interface.
- Available since the Sandy Bridge microarchitecture.
- Provides energy consumed in Joules.

- Using the NVIDIA Management Library.
- Available since the Kepler microarchitecture for the Tesla and Quadro GPU families.
- Provides instant power in Watts with an error of \pm 5 W.

DTLZ test problems

- Designed for evaluating multi-objective algorithms.
- Allow an arbitrary number of objective functions.

Results, conclusions and future work

- Three implementations:
 - 1. Sequential implementation by Kalyanmoy Deb.
 - 2. GPU implementation by Samarth Gupta.
 - 3. Our GPU implementation.
- Two test problems: DTLZ2 and DTLZ7.
- 5, 10 and 15 objective functions.
- 50 generations.
- Varying population sizes.

Runtime of DTLZ7 with 5 objectives

Average power of DTLZ7 with 5 objectives

Energy consumed by DTLZ7 with 5 objectives

- We have proposed a GPU implementation of the Non-Dominated Sorting procedure of the NSGA-II algorithm.
- Our evaluation has shown that this implementation is faster and more energy efficient than the other proposals for this platform and these test problems.

- Multi-core and Multi-GPU implementation.
- Evaluate our proposal in other platforms.
- Use real multi-objective problems.

Thanks!