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Motivations for our researchMotivations for our research

● Our research includes Multidimensional Positive Definite Advection 
Transport Algorithm, which is one of the main parts of the EULAG model

● MPDATA is a real-life CFD application

● EULAG is an established computational model developed by the group 
headed by Piotr K. Smolarkiewicz for simulating thermo-fluid flows 
across a wide range of scales and physical scenarios

● One of the most interesting applications
of the EULAG model is numerical weather
prediction (NWP)

● In our research, we propose to rewrite
the main parts of EULAG and replace
standard HPC systems by emerging 
computing cluster



  

Motivations for our researchMotivations for our research

● The efficient utilization of emerging computing platforms becomes a 
global challenge

● The communication layer of modern HPC platforms is getting 
increasingly heterogeneous and hierarchical

● In consequence, even on platforms with homogeneous processors, the 
communication cost of many parallel applications will depend on the 
arrangement of processes in clusters

● In this work we propose a heuristic solution how solve a problem of 
mapping MPI processes (ranks) onto computing nodes, taking into 
account:

– the network structure and performance

– the logical communication flow of the application



  

MPDATAMPDATA

● MPDATA belongs to the group of  forward-in-time algorithms, and 
performs a sequence of stencil computations

● The whole MPDATA computations in each time step are 
decomposed into a set of 17 heterogeneous stencils

● In numerical simulation, where MPDATA can be used, the 
simulation runs for several thousand time steps

● A single MPDATA time step requires 5 input and 1 output 
matrices

● MPDATA, as a part of EULAG, is interleaved with other important 
computation in each time step

● MPDATA is a memory-bounded algorithm

● We focus on simulations using 3D grid
– the size of grid is n by m by l, where l=64 or l=128 for the case of NWP



  

MPDATA on a single nodeMPDATA on a single node
(shared memory version)(shared memory version)

● The methodology of adaptation is based on the following 
methods:

– (3+1)D decomposition of MPDATA

– Improving efficiency of the decomposition by reduction of 
computation overheads

– Partitioning of threads into teams

– Task and data parallelisms

– Search for the trade-off between computation and inter-cache 
communication

– The OpenMP API is used to utilize the computing resources

● Detailed description of adaptation is presented in the papers:
– L. Szustak, K. Rojek, P. Genere, Using Intel Xeon Phi coprocessor to accelerate 

computations in MPDATA algorithm, Lect. Notes in Comp. Sci., 8385:582-592, 2014

– L. Szustak, K. Rojek, T. Olas, and P. Gepner, Adaptation of MPDATA heterogeneous 
stencil computation to Intel Xeon Phi coprocessor, Scientific Programming, 2015



  

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● The target HPC platforms

– Clusters with CPU

– Clusters with Intel Xeon Phi coprocessors
● Including both 1st and 2ndgenerations 

– Hybrid clusters with CPU + Intel Xeon Phi



  

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● The target HPC platforms

– Clusters with homogeneous CPU with 
heterogeneous network

– Clusters with Intel Xeon Phi coprocessors
● Including both 1st and 2ndgenerations 

– Hybrid clusters with CPU + Intel Xeon Phi



  

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● One of the common methods for exploiting the multicore 
clusters is to employ the hybrid programming model
– It allows for efficient usage of the distributed and shared 

memory hierarchies of these systems

● This implies to combine different programming 
paradigms, such as MPI and OpenMP

● Such a mixture is successfully utilized for the MPDATA 
computation:

– MPI rank is assigned to every multicore node 

– OpenMP threads are employed to utilize the multicore 
computational resources



  

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● Currently:

rank A 

rank B …

…

i-th time step

sync.

computationcomputation

computation



  

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● Currently:

rank A 

rank B …

…

i-th time step
computation
communication
computation
communication

computation
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MPDATA on clustersMPDATA on clusters
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MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● Currently:

● In the future (in progress, there are a lot of issues …):
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MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● The 3D MPDATA domain is partitioned in 2D equal sub-
domains that are further one-to-one mapped to nodes 

● Every sub-domain is decomposed according to the (3+1)D 
decomposition proposed in our previous works (shared memory 
version)

horizontal
direction

vertical
direction



  

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● The 3D MPDATA domain is partitioned in 2D equal sub-
domains that are further one-to-one mapped to nodes 

● Every sub-domain is decomposed according to the (3+1)D 
decomposition proposed in our previous works (shared memory 
version)

horizontal
direction

vertical
direction

Problem: How to map MPI ranks onto computing nodes



  

Arrangement of MPI ranksArrangement of MPI ranks
in Cluster for MPDATAin Cluster for MPDATA

● The main goal is to minimize the communication cost of MPDATA
● All configurations can be tested in empirical way ...
● Instead of it, we propose to use the approximate topology-aware 

heuristic algorithm:
1.We first, propose an extension of the network-bandwidth-based cost 

function (see work [1]) to accurately measure the communication cost 
of the MPDATA application

2.Then we formulate the heuristic solution that efficiently constructs a 
near-optimal arrangement for MPDATA by using:
● information about network topology
● and the application communication flow

[1] Malik, T., Rychkov, V., Lastovetsky, A.: Network-aware optimization of commu-
nications for parallel matrix multiplication on hierarchical hpc platforms. Concur-
rency and Computation: Practice and Experience 28 (2016) 802–821 cpe.3609.



  

Cost FunctionCost Function

● We use the cost function to estimate the 
communication cost incurred by any data 
partitioning

● The cost functions is based on asymmetric 
bandwidth
– MPDATA has different horizontal and vertical 

communication so our cost function takes two 
bandwidth values



  

Cost FunctionCost Function

● Cost function takes two bandwidth values
– One for horizontal communication

– Other is for vertical one



  

The cost of communicationThe cost of communication
for any arrangement “for any arrangement “A”A”

● The communication cost associated with 
arrangement A is represented by two values 
cost_H (A), cost_V (A)

● The problem of finding the optimal arrangement 
can be formulated as minimization of their sum:

cost_H (A) + cost_V (A) → min



  

Heuristic Based on Asymmetric Heuristic Based on Asymmetric 
Bandwidth Cost FunctionBandwidth Cost Function

● This is an offline solution (before execution of 
MPDATA)

● Input: 
– Processors from the same group will follow one 

other in linear arrangement

– Horizontal and Vertical Bandwidth between 
processors

● Output
– Near-optimal arrangement of MPI ranks in cluster 

for MPDATA



  



  

● First Step allows us to find optimal 2D shape “A”

● Second Step: Apply the bandwidth-based algorithm

– First try permutations of the groups in the first column, and then pick the 
"order" with minimum cost of vertical communication

– Then, for each following column k = 2, . . . , n, try permutations of the 
groups in this column, and pick the one that minimizes the sum of 
vertical and horizontal costs for first ‘k’ columns

● We will feed the new arrangement that we get in step 2 to the first step of 
next iteration of our heuristic algorithm that will find the optimal m × n 
arrangement for this new order

● This procedure continues until we find a fixed point of the transformation 
performed by one iteration of the algorithm

– If communication cost of the next iteration is greater then the previous 
one, its mean previous iteration has near-optimal arrangement

Heuristic Based on Asymmetric Heuristic Based on Asymmetric 
Bandwidth Cost FunctionBandwidth Cost Function



  

Experimental platformExperimental platform

● Performed experiments on Grid 5000

● All clusters have identical Intel Xeon E5-2630 v3 processors with 8 
cores per nod

– Inter-Cluster experiments:
● Four clusters with 12 nodes in total:

Grimoire(3), Parasilo(4), Grisou(2), Paravance(3).
● One MPI process per node
● Problem size 512 × 512 × 64

– Intra-Cluster Experiments:
● 12 nodes from the Grisou cluster
● One MPI process per node
● Problem size 512 × 512 × 64



  

Inter-Cluster ExperimentsInter-Cluster Experiments



  

Intra-Cluster ExperimentsIntra-Cluster Experiments



  

Conclusion and future workConclusion and future work

● In this paper, we applied an approach aimed to minimize the 
communication cost of parallel CFD application using information 
about network topology/performance and application 
communication flow

● We also demonstrate that proposed solution provides significant 
performance gain

● We plan to adapt the proposed solution for the hybrid clusters with 
Intel Xeon Phi



  

Thank you for your attention!Thank you for your attention!
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