

International Workshop in Theoretical Approaches to Performance Evaluation, Modeling and Simulation
14-16th December 2016, Granada, Spain

Network-aware Optimization of MPDATA on
Homogeneous Multi-core Clusters with Heterogeneous

Network

Lukasz Szustak
Roman Wyrzykowski

Czestochowa University of Technology
Poland

Tania Malik
Alexey Lastovetsky

Heterogeneous Computing Laboratory
University College Dublin

Ireland

Motivations for our researchMotivations for our research

● Our research includes Multidimensional Positive Definite Advection
Transport Algorithm, which is one of the main parts of the EULAG model

● MPDATA is a real-life CFD application

● EULAG is an established computational model developed by the group
headed by Piotr K. Smolarkiewicz for simulating thermo-fluid flows
across a wide range of scales and physical scenarios

● One of the most interesting applications
of the EULAG model is numerical weather
prediction (NWP)

● In our research, we propose to rewrite
the main parts of EULAG and replace
standard HPC systems by emerging
computing cluster

Motivations for our researchMotivations for our research

● The efficient utilization of emerging computing platforms becomes a
global challenge

● The communication layer of modern HPC platforms is getting
increasingly heterogeneous and hierarchical

● In consequence, even on platforms with homogeneous processors, the
communication cost of many parallel applications will depend on the
arrangement of processes in clusters

● In this work we propose a heuristic solution how solve a problem of
mapping MPI processes (ranks) onto computing nodes, taking into
account:

– the network structure and performance

– the logical communication flow of the application

MPDATAMPDATA

● MPDATA belongs to the group of forward-in-time algorithms, and
performs a sequence of stencil computations

● The whole MPDATA computations in each time step are
decomposed into a set of 17 heterogeneous stencils

● In numerical simulation, where MPDATA can be used, the
simulation runs for several thousand time steps

● A single MPDATA time step requires 5 input and 1 output
matrices

● MPDATA, as a part of EULAG, is interleaved with other important
computation in each time step

● MPDATA is a memory-bounded algorithm

● We focus on simulations using 3D grid
– the size of grid is n by m by l, where l=64 or l=128 for the case of NWP

MPDATA on a single nodeMPDATA on a single node
(shared memory version)(shared memory version)

● The methodology of adaptation is based on the following
methods:

– (3+1)D decomposition of MPDATA

– Improving efficiency of the decomposition by reduction of
computation overheads

– Partitioning of threads into teams

– Task and data parallelisms

– Search for the trade-off between computation and inter-cache
communication

– The OpenMP API is used to utilize the computing resources

● Detailed description of adaptation is presented in the papers:
– L. Szustak, K. Rojek, P. Genere, Using Intel Xeon Phi coprocessor to accelerate

computations in MPDATA algorithm, Lect. Notes in Comp. Sci., 8385:582-592, 2014

– L. Szustak, K. Rojek, T. Olas, and P. Gepner, Adaptation of MPDATA heterogeneous
stencil computation to Intel Xeon Phi coprocessor, Scientific Programming, 2015

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● The target HPC platforms

– Clusters with CPU

– Clusters with Intel Xeon Phi coprocessors
● Including both 1st and 2ndgenerations

– Hybrid clusters with CPU + Intel Xeon Phi

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● The target HPC platforms

– Clusters with homogeneous CPU with
heterogeneous network

– Clusters with Intel Xeon Phi coprocessors
● Including both 1st and 2ndgenerations

– Hybrid clusters with CPU + Intel Xeon Phi

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● One of the common methods for exploiting the multicore
clusters is to employ the hybrid programming model
– It allows for efficient usage of the distributed and shared

memory hierarchies of these systems

● This implies to combine different programming
paradigms, such as MPI and OpenMP

● Such a mixture is successfully utilized for the MPDATA
computation:

– MPI rank is assigned to every multicore node

– OpenMP threads are employed to utilize the multicore
computational resources

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● Currently:

rank A

rank B …

…

i-th time step

sync.

computationcomputation

computation

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● Currently:

rank A

rank B …

…

i-th time step
computation
communication
computation
communication

computation
communication
computation
communication

sync.

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● Currently:

rank A

(i+1)-th time step

rank B …

…

…

i-th time step

…

…

…

sync. sync. sync.

computation
communication
computation
communication

computation
communication
computation
communication

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● Currently:

rank A

(i+1)-th time step

rank B …

…

…

i-th time step

…

…

…

sync. sync. sync.

computation
communication

computation
communication
computation
communication

computation
communication

computation
communication
computation
communication

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● Currently:

● In the future (in progress, there are a lot of issues …):

rank A

(i+1)-th time step

rank B …

…

…

i-th time step

…

…

…

sync. sync. sync.

rank A

rank B …

…

…

…

sync. sync. sync.

…

…

computation
communication

computation
communication
computation
communication

computation
communication

computation
communication
computation
communication

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● The 3D MPDATA domain is partitioned in 2D equal sub-
domains that are further one-to-one mapped to nodes

● Every sub-domain is decomposed according to the (3+1)D
decomposition proposed in our previous works (shared memory
version)

horizontal
direction

vertical
direction

MPDATA on clustersMPDATA on clusters
(distributed memory version)(distributed memory version)

● The 3D MPDATA domain is partitioned in 2D equal sub-
domains that are further one-to-one mapped to nodes

● Every sub-domain is decomposed according to the (3+1)D
decomposition proposed in our previous works (shared memory
version)

horizontal
direction

vertical
direction

Problem: How to map MPI ranks onto computing nodes

Arrangement of MPI ranksArrangement of MPI ranks
in Cluster for MPDATAin Cluster for MPDATA

● The main goal is to minimize the communication cost of MPDATA
● All configurations can be tested in empirical way ...
● Instead of it, we propose to use the approximate topology-aware

heuristic algorithm:
1.We first, propose an extension of the network-bandwidth-based cost

function (see work [1]) to accurately measure the communication cost
of the MPDATA application

2.Then we formulate the heuristic solution that efficiently constructs a
near-optimal arrangement for MPDATA by using:
● information about network topology
● and the application communication flow

[1] Malik, T., Rychkov, V., Lastovetsky, A.: Network-aware optimization of commu-
nications for parallel matrix multiplication on hierarchical hpc platforms. Concur-
rency and Computation: Practice and Experience 28 (2016) 802–821 cpe.3609.

Cost FunctionCost Function

● We use the cost function to estimate the
communication cost incurred by any data
partitioning

● The cost functions is based on asymmetric
bandwidth
– MPDATA has different horizontal and vertical

communication so our cost function takes two
bandwidth values

Cost FunctionCost Function

● Cost function takes two bandwidth values
– One for horizontal communication

– Other is for vertical one

The cost of communicationThe cost of communication
for any arrangement “for any arrangement “A”A”

● The communication cost associated with
arrangement A is represented by two values
cost_H (A), cost_V (A)

● The problem of finding the optimal arrangement
can be formulated as minimization of their sum:

cost_H (A) + cost_V (A) → min

Heuristic Based on Asymmetric Heuristic Based on Asymmetric
Bandwidth Cost FunctionBandwidth Cost Function

● This is an offline solution (before execution of
MPDATA)

● Input:
– Processors from the same group will follow one

other in linear arrangement

– Horizontal and Vertical Bandwidth between
processors

● Output
– Near-optimal arrangement of MPI ranks in cluster

for MPDATA

● First Step allows us to find optimal 2D shape “A”

● Second Step: Apply the bandwidth-based algorithm

– First try permutations of the groups in the first column, and then pick the
"order" with minimum cost of vertical communication

– Then, for each following column k = 2, . . . , n, try permutations of the
groups in this column, and pick the one that minimizes the sum of
vertical and horizontal costs for first ‘k’ columns

● We will feed the new arrangement that we get in step 2 to the first step of
next iteration of our heuristic algorithm that will find the optimal m × n
arrangement for this new order

● This procedure continues until we find a fixed point of the transformation
performed by one iteration of the algorithm

– If communication cost of the next iteration is greater then the previous
one, its mean previous iteration has near-optimal arrangement

Heuristic Based on Asymmetric Heuristic Based on Asymmetric
Bandwidth Cost FunctionBandwidth Cost Function

Experimental platformExperimental platform

● Performed experiments on Grid 5000

● All clusters have identical Intel Xeon E5-2630 v3 processors with 8
cores per nod

– Inter-Cluster experiments:
● Four clusters with 12 nodes in total:

Grimoire(3), Parasilo(4), Grisou(2), Paravance(3).
● One MPI process per node
● Problem size 512 × 512 × 64

– Intra-Cluster Experiments:
● 12 nodes from the Grisou cluster
● One MPI process per node
● Problem size 512 × 512 × 64

Inter-Cluster ExperimentsInter-Cluster Experiments

Intra-Cluster ExperimentsIntra-Cluster Experiments

Conclusion and future workConclusion and future work

● In this paper, we applied an approach aimed to minimize the
communication cost of parallel CFD application using information
about network topology/performance and application
communication flow

● We also demonstrate that proposed solution provides significant
performance gain

● We plan to adapt the proposed solution for the hybrid clusters with
Intel Xeon Phi

Thank you for your attention!Thank you for your attention!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27

