

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Tuning the Blocksize for Dense Linear Algebra Factorization Routines with the Roofline Model Benner, P. Ezzati², E.S. Quintana-Ortí¹, A. Remón³ and J.P. Silva² December 15, 2016

¹MPI for Dynamics of Complex Technical Systems, Magdeburg, Germany ²Universidad de la República, Montevideo, Uruguay ³Universidad Jaime I, Castellón, Spain

- Dense numerical linear algebra operations are crucial in many scientific and engineering applications
- Consequently, many efforts to optimize this operations can be found in the literature. A good example are the basic numerical linear algebra subroutines (BLAS) and LAPACK specifications
- Additionally, hardware manufacturers usually provide specific implementations of BLAS and LAPACK for their platforms

- Tiled implementations has demonstrated to suit modern hardware architectures
- In particular, they provide a convenient memory pattern access that facilitates an efficient use of the memory hierarchy
- Unfortunately, the performance of tiled implementations highly depends on the algorithmic blocksize employed
- Find the optimal algorithmic blocksize is far from being trivial

The Roofline model is a graphical tool used to evaluate the performance of a computational kernel

It merges in a single plot the memory-bound and compute-bound spaces of a hardware architecture

We aim to obtain the optimal algorithmic blocksize for a given computational kernel and hardware plaform from the related Roofline model

- 1. The Roofline model
- 2. The Gauss-Jordan alg.
- 3. Experimental evaluation
- 4. Conclusions and future work

The Roofline model

Joints in a plot the memory and compute-bound spaces of the HW

Note that the Roofline model is platform-specific

🞯 🚥 The Roofline model

The Roofline model

- Shows the maximal attainable performance at a given arithmetic intensity (AI)
- The AI of a kernel is computed as the ratio between: floating-point arithmetic operations (flops) and memory accesses (memops)

🮯 ጩ The Roofline model

The Roofline model

- Given the AI related to a computational kernel, the Roofline model states the maximal performance that can be expected
- In practice, Roofline model can be used to evaluate the performance of a computational kernel and identify its bottlenecks

🮯 ጩ The Roofline model

The Roofline model

- To create the model we need the peak performance and the memory bandwidth of the architecture
- These figures are provided by the HW manufacturer, or can be obtained experimentally

- 1. The Roofline model
- 2. The Gauss-Jordan alg.
- 3. Experimental evaluation
- 4. Conclusions and future work

- The Gauss-Jordan elimination (GJE) algorithm computes the inverse of a matrix
- GJE presents a computational cost and numerical properties similar to the traditional method based on the LU factorization
- It presents:
 - Fine grain parallelism computations: pivoting
 - Coarse grain parallelism computations: matrix-matrix products
- Similarities with matrix factorization methods: LU, Cholesky, QR

- The Gauss-Jordan elimination (GJE) algorithm computes the inverse of a matrix
- GJE presents a computational cost and numerical properties similar to the traditional method based on the LU factorization
- It presents:
 - Fine grain parallelism computations: pivoting
 - Coarse grain parallelism computations: matrix-matrix products
- Similarities with matrix factorization methods: LU, Cholesky, QR

₩

Results can be extrapolated to other linear algebra kernels

Algorithm: $[A] := GJE_BLK(A)$ $\begin{array}{c} A_{TL} A_{TR} \\ \hline A_{BL} A_{RR} \end{array}$ Partition $A \rightarrow ($ where A_{TL} is 0×0 while $m(A_{TL}) < m(A)$ do Determine block size b Repartition $\begin{pmatrix} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{pmatrix}$ where A_{11} is $b \times b$ $\begin{bmatrix} A_{01} \\ A_{11} \\ A_{21} \end{bmatrix} := \text{GJE}_{\text{UNB}} \left(\begin{bmatrix} A_{01} \\ A_{11} \\ A_{21} \end{bmatrix} \right)$ Unblocked Gauss-Jordan Matrix-matrix product $A_{00} := A_{00} + A_{01}A_{10}$ $A_{20} := A_{20} + A_{21}A_{10}$ Matrix-matrix product $A_{10} := A_{11}A_{10}$ Matrix-matrix product $A_{02} := A_{02} + A_{01}A_{12}$ Matrix-matrix product $A_{22} := A_{22} + A_{21}A_{12}$ Matrix-matrix product $A_{12} := A_{11}A_{12}$ Matrix-matrix product

Continue with

$$\left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right)$$

endwhile

At a given iteration

A00	A01	A02
A10	A11	A12
A20	A21	A22

A00	A01	A02		
A10	A11	A12		
A20	A21	A22		
$\begin{bmatrix} A_{01} \\ A_{11} \\ A_{21} \end{bmatrix} :=$	$= GJE_{\rm U}$	$_{\rm NB} \left(\left[\begin{array}{c} A_{01} \\ A_{11} \\ A_{21} \end{array} \right] \right)$		

 A_{11} is $b \times b$

At a given iteration

A00	A01	A02
A10	A11	A12
A20	A21	A22

 $\begin{array}{l} A_{00} := A_{00} + A_{01}A_{10} \\ A_{20} := A_{20} + A_{21}A_{10} \\ A_{10} := A_{11}A_{10} \end{array}$

A00	A01	A02
A10	A11	A12
A20	A21	A22

 $\begin{array}{l} A_{02} := A_{02} + A_{01}A_{12} \\ A_{22} := A_{22} + A_{21}A_{12} \\ A_{12} := A_{11}A_{12} \end{array}$

🐟 📖 The Gauss-Jordan alg.

Which is the AI of GJE?

Flops and memops count (in 1 step of the algorithm)

Operation	flops	memops	BLAS level
GJE _UNB	2 <i>nb</i> ²	2 <i>nb</i> ²	1 - 2
MM products	2n(n-b)b	2n(n-b)	3

We asume that:

1 memop is required by 1 BLAS-1 / BLAS-2 flop

1 memop is required by *b* BLAS-3 flops

In summary

Total number of flops: Total number of memops:

 $2n^3$ flops $2n^2(n/b-1+b)$ memops

🐟 📖 The Gauss-Jordan alg.

Which is the AI of GJE? (cont.)

Computing optimal Al and b

$$AI_{gje} = \frac{2n^3}{2n^2(n/b - 1 + b)}$$
 flops-per-memop

We pretend to maximize AI → minize memops
 Optimal b (b_{opt}) is the one that minizes 2n²(n/b - 1 + b)

$$b_{opt} = \sqrt{n}$$
 $AI_{gje}{}_{opt} = rac{n}{2\sqrt{n}-1} pprox rac{\sqrt{n}}{2}$

The multi-block variant

- The panel factorization in GJE limits the algorithm performance
- This operation is performed via an unblocked variant of GJE, based on BLAS-1 and BLAS-2 kernels
- A variation that alleviates this problem replaces the unblocked GJE by a blocked variant of the same algorithm
- This reports a multi-blocksize variant of GJE that delivers higher performance

Algorithm: $[A] := GJE_BLK(A)$		
Partition $A \rightarrow \left(\frac{A_{TL}}{A_{BL}} \frac{A_{TR}}{A_{BR}}\right)$ where A_{TL} is 0×0		
while $m(A_{TL}) < m(A)$ do Determine block size b Repartition		
$ \begin{pmatrix} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} A_{02} \\ \hline A_{10} & A_{11} A_{12} \\ \hline A_{20} & A_{21} A_{22} \end{pmatrix} $ where A_{11} is $b \times b$		
$\begin{bmatrix} A_{01} \\ A_{11} \\ A_{21} \end{bmatrix} := GJE_{_UNB} \begin{pmatrix} \begin{bmatrix} A_{01} \\ A_{11} \\ A_{21} \end{bmatrix} \end{pmatrix}$ $A_{00} := A_{00} + A_{01}A_{10}$ $A_{20} := A_{20} + A_{21}A_{10}$ $A_{10} := A_{11}A_{10}$ $A_{02} := A_{02} + A_{01}A_{12}$ $A_{22} := A_{02} + A_{21}A_{12}$ $A_{12} := A_{21} + A_{21}A_{12}$ $A_{12} := A_{11}A_{12}$	Unblocked Gauss-Jordan ← Matrix-matrix product Matrix-matrix product Matrix-matrix product Matrix-matrix product Matrix-matrix product	Blocked variant of blocksize <i>c</i>

Continue with

$$\left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right)$$

endwhile

🐟 📖 The Gauss-Jordan alg.

Which is the AI of multiblock-GJE?

Flops and memops count (in 1 step of the algorithm)

Operation	flops	memops	BLAS level
GJE _UNB	2 <i>nc</i> ²	2 <i>nc</i> ²	1 - 2
GJE_blk	2n(b-c)c	2n(b-c)	3
MM products	2n(n-b)b	2n(n-b)	3

Note that:

The inner and outer instances of GJE_{blk} require b/c and n/b steps 1 memop required by c/b BLAS-3 flops in inner/outer GJE_{blk}

In summary

Total number of flops: $2n^3$ flops Total number of memops: $2n^2(n/b - 2 + b/c + c)$ memops

🐟 📖 The Gauss-Jordan alg.

Which is the AI of multiblock-GJE? (cont.)

Computing optimal *AI* and *b*

• Optimal $c(c_{opt})$ is $\sqrt{(n)}$

$$AI_{mbgje} = \frac{2n^3}{2n^2(n/b - 2 + 2\sqrt{(b)})} \text{ flops-per-memory}$$

$$b_{opt} = \sqrt{n} \qquad c_{opt} = \sqrt{b}$$
$$AI_{mbgje_{opt}} = \frac{n}{3\sqrt[3]{n-2}} \approx \frac{(\sqrt[3]{n})^2}{3}$$

- 1. The Roofline model
- 2. The Gauss-Jordan alg.
- 3. Experimental evaluation
- 4. Conclusions and future work

Hardware

Processor	#cores	frequency	Bandwidth	Peak (DP)
INTEL i7-4770	4	3.4 GHz	25.5 GB/s	108.8 GFlops

All implementations

- Rely on kernels in the Intel MKL v.11.1 library
- Use the four cores in the platform

Sc csc Experimental evaluation

Impact of b on the AI

csc Experimental evaluation

Impact of b on the performance

Matrix dimension	b _{opt}	b	GFLOPS
		32	38
2,048	45	48	40
		64	40
		32	45
4,096	64	64	52
		96	51
6,144	78	64	62
		96	76
		128	75
9,216		64	78
	96	96	102
		128	98

🐟 宽 Experimental evaluation

Impact of b on the performance

Sc Experimental evaluation

Impact of b on the performance

Matrix dimension	b _{opt} -c _{opt}	b-c	GFLOPS	Arith. intensity
2,048	161-12	160-16	62	56
4,096	256-16	256-16	69	89
6,144	335-18	320-16	82	115
9,216	406-20	384-16	94	149

- 1. The Roofline model
- 2. The Gauss-Jordan alg.
- 3. Experimental evaluation
- 4. Conclusions and future work

Solutions and future work

Conclusions

- we have presented simple yet accurate models to determine the blocksize in GJE implementations
- we have extended the approach to multi-block algorithms
- the experiments demonstrate that improvements in the AI report gains in performance
- the results can be extended to other kernels like i.e., dense matrix factorization

Future work

- apply same technique to other linear algebra kernels
- develop more accurate models

THANKS.